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Abstract, Vacuum-field solutions of Ross and Sen-Dunn theories of gravitation have 
been obtained with the aid of a Friedmann-type metric. Non-static solutions are found 
showing that the Birkhoff theorem holds for neither theory. It  has been observed that the 
two theories have a limited scope for vacuum solution as against the Brans-Dicke theory. 
Mach’s principle, however, holds for both the theories. 

1. Introduction 

Einstein effected a geometrisation of physics in his general theory of relativity, which 
geometrises the phenomenon of gravitation by identifying the metric tensor of a 
Riemannian space-time with the gravitational potential. In the scalar-tensor theory 
of Brans and Dicke (1961), however, the tensor field is identified with the metric 
tensor of a Riemannian geometry but the scalar field remains alien to the geometry. It 
would, indeed, be in keeping with the spirit of Einstein’s principle of geometrisation to 
have a scalar-tensor theory of gravitation where both the scalar and tensor fields 
would have geometrical significance. With this end in view two attempts have been 
made recently, one by Sen and Dunn (1971) and the other by Ross (1972). The 
Sen-Dunn theory is based on Lyra’s (195 1)  generalisation of Riemannian geometry, 
while the Ross theory makes use of Weyl’s modification (Weyl 1918) of the same 
geometry. 

Recently O’Hanlon and Tupper (1972) solved the vacuum-field equations of the 
Brans-Dicke theory with the aid of a space-time metric of Friedmann type. They 
found non-static solutions showing that, in general, the Birkhoff theorem does not 
exist for the Brans-Dicke theory. Also they obtained solutions which may be inter- 
preted as being contrary to Mach’s principle. 

It may be of some interest to examine, in the same manner, the vacuum-field 
solutions of the Ross and Sen-Dunn theories of gravitation with a Friedmann-type 
metric, which we do  here in continuation of our earlier work (Krori and Nandy 1977). 
We have also found non-static solutions pointing to the conclusion that the Birkhoff 
theorem holds for neither theory. Mach’s principle, however, appears to hold for both 
of them. 
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2. Vacuum-field equations and their solutions 

2.1. Ross theory 

We consider a Friedmann-type line element as follows: 

d s 2 =  - d t 2 + a 2 ( t ) ( ~ + r 2  dr2 d8'+r2 sin2 8 d$2), 
1-kr 

where k = +1,0,  -1 for a closed, flat or open space respectively. 
The Ross field equations in empty space are 

SrB - tg& = 0 

4lU!Iu = gP44Iu,4 - gUP4ln{aP, -441u4I" = 0 

and 

where 

Sro = R T ~  - 241rip - 241r41~ + 2gr,+4'"4Ia 

- gn4gY~~lulY + 241u{.rrP, a)+ grPgY"41s{~Y, 81 
and 

41" = g"Q1p. ( 5 )  

A double vertical bar here denotes covariant differentiation. 4 is the fundamental 
scalar field in the theory. Rrp is the usual contracted Riemann curvature tensor and 
{ay, S }  is the Christoffel symbol of the second kind. 

With the help of equation (l) ,  the Ross field equations (2 )  and (3) reduce to 

(6 ) 
4 
r 

2 
r 

2aii + 6' + k + a 2 d 2  - 2 a 2 4  +-(1 - kr2)4' - 4aU4 - 3(1- kr2)d" = 0 

2aU + U'+ k + a 2 d 2  - 2 a 2 4  +-(1 - 2kr2)4'-4ad4 + 2(1- kr2)4"- (1 - kr2)4" = 0 

(7) 

(8) 

(9) 

(10) 

2 
r 

-3(k + d ') + 6au4 - 3a '4' + (1 - kr2)4'* - 2( 1 - kr2)4" - - (2 - 3kr2)4' = 0 

a 
a 

($1 + 4'4 - -41 = 0 

1 
r 

(1 - kr2)4" + a'$ +-(2 - 3 kr2)4' - 3au4 - 4(1- kr2)dt2 + 4 ~ ~ 4 ~  = 0 

where primes denote differentiation with respect to r and dots denote differentiation 
with respect to t .  

When 4' = 0, i.e. 4 = 4(t) we have from equations (7), (8) and (10) 

2aa + a 2  + k + a 2 d 2  - 2 a 2 4  - 4aa4 = 0 (11) 

(U  k = 0 (12) 

a'$ - 3aa4  +4a2d2 = 0.  (13) 

and 
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When 4 '  # 0, equation (9) can be written as 

4' . a 
-+4--=0.  
4' a 

Subtracting equation (7) from (6) we get 

??++I -  1 
4' r(l-kr ')=" 

1945 

(14) 

From equations (14) and (15) we find that 

4 = ln[B(t)+(2Ra/k)J( l -  kr')] (16) 

where R is an arbitrary constant and B(t)  is an arbitrary function of time. 
A straightforward calculation using equations (6)-(10) and other equations 

obtained from them by forming the partial derivative with regard to r leads to the 
following necessary conditions for any solution of equations (6)-(10) with 4' # 0, 

a a + 2 k = 0 ,  a-a$=O,  k+r - ' ( l -k r2 )4 '=0 .  (17) 

If 4' # 0, then k = 0 is excluded. If k f 0, equations (17) after insertion into equations 
(6)-(10) lead to a contradiction. This leaves the case 4' = 0 as the only possible one 
for the space-times considered. Again when 4' = 0, we find from equations (17) and 
(12) that k = 0 is the only possible case for any solution with 4' = 0. 

Now when +'= 0, we have from equations ( l l ) ,  (12) and (13) 

a a i 4 a J - k - 4 k  = O .  (18) 

2.1.1. Solution: k = 0 

ds' = -dt' + (Dt + C)'(dr' + r' de'+ r' sin' 8 d$') 

4 = ln[4o(Dt + C>l 

(19) 

(20) 

where 40, D, C are constants. 
The following are some of the properties of the space-time (19) of this solution: 
(1) For C>O and D>O the flat three-space expands indefinitely from an initial 

(2) For C>O and D < O  the initially finite flat universe contracts to a singular 

In case (l), 4, as given by equation (20), increases indefinitely with time, whereas 

non-singular state. 

condition in a finite time. 

in case (2) it decreases without limit. 

2.2. Sen-Dunn theory 

The field equations of the Sen-Dunn theory for the combined scalar and tensor fields 
are 

Rij -fg,jR = - 8 ~ G ( x O ) - ~ 7 ' j ,  + w ( x ~ ) > - ' ( x ~ x { ~  -$gjjx?kXoik) (21) 

where w = t .  Rii -igiiR is the Einstein tensor, x o  is the scalar field, Tii is the energy- 
momentum tensor and x ;  = a x o l d x i .  
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We consider a line element of the form 

d s 2 =  -(x0)' d t2+(xo)2u2( t ) (L+r2 1 - kr2 d02+r2 sin2 O dt+b2). (22)  

With the aid of equation (22)  the Sen-Dunn vacuum field equations may be written 
down as follows: 

(23)  
xo  f0 1 2 x 0 2  9 2 4 2 X I 0  

x 1 0 2  

2aii + U 2 +  k + 4 a ( i a + 2 a 2 a - - a  x - - ( l -  kr ) ~ - - ( l -  kr ) a = O  
X x 4 x  4 x r  X 

I10 

2 a i i + a 2 + k + 4 a a ~ 4 2 a  xo 2 x 0  - - -U 1 2 x 0 2  - -2( l -kr  2 ) T  
X x 4 xo2 X 

2 X I 0  1 2 X ' O 2  

xo 9 , x o 2  

- - ( 1 - 2 k r 2 ) a + - ( 1 - k r  ) - = O  
r x 4  X 

102 
2 * X I 0  1 2 

It0 

-3(u2+ k ) - 6 a u  - - - a - 7 + 2 ( 1 -  k r 2 ) ~ + - ( 2 - 3 k r  ) ~ - - ( l -  kr )-= 0 
x 4 x  x r  x 4  X 

i r 0  5 x O x r O  a x t O  
- 0 - 0. 

x o  4 xo2  a x 

When x'? = 0, i.e. x o  = xo( t ) ,  equations (23) ,  (24)  and (25)  reduce to 

and 

When x f O  # 0, equation (26)  can be written as 
x t o  X O  a 

X I 0  4 x o  a 
0 = 

and from equations (23)  and (24)  we have 

5 X I 0  1 U0 

2 -0 .  
x r o  4 x o  r(1-kr  ) 

From equations (29)  and (30) we find that 

4x0-' / '= ( F J ( 1  - kr2)-  T ( t ) )  

where A is an arbitrary constant and T(r)  is an arbitrary function of time. 
A calculation involving equations (23),  (24)  and (25)  gives 

x l o 2  
2 P O  7 2 x 0 2  3 

2aa - a * - k + 2a - -a -- - (1-  kr ) 02 = 0.  
x 4 x  4 X 
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Partial differentiation of this with respect to r gives 

It can be seen that equation (31) does not satisfy (33) unless x“ = 0. This leaves the 
case XI’ = 0 as the only possible one for any solution of equations (23)-(26). When 
XI() = 0, we find the following solution from equations (27) and (28). 

2.2.1. Solution: k = 0 

ds’ = -(x’)~ dt2 + ( x ~ ) ) ~ [ ( P  + I)(@ + N)]2”P+1’(dr2 + r2  de2+  r 2  sin2 8 d$2) (34) 

(35) xo = C[(P + 1)(@ + N)]l’q(Ps.l) 

where C, p, N are constants and 

or 

q = - t >  P = - 2 .  

Introduction of a new time coordinate T by 

[ (P+  I ) ( @  +N)]p’(p+l’ 1 

in place of t shows that the solution is 

d s 2 =  C 2 ~ P ~ ) ( 2 ’ P ) ( 1 + ( 1 ’ q ’ 1 ( - d ~ 2 + d X 2 + d y 2 + d ~ 2 ) .  (39) 

Now, bothcasesq.=-i ,  P = - 2  a n d q = - $ .  P = $ l e a d  to (2 /P) [ I+( l /q) ]=+l ,  i.e. to 
the same metric up to a constant factor. Obviously this metric (39) represents a 
conformally flat space-time. 

When k # 0, no general solutions to equations (27) and (28) could be obtained. 
‘This, however, causes no difficulty in arriving at the following conclusions. 

3. Conclusions 

The solutions obtained above are all non-static. It therefore follows that there is no 
Birkhoff theorem for the Ross or the Sen-Dunn theory when the scalar field is a 
function of t only. This lends support to the view stated in our earlier work. O’Hanlon 
and Tupper also arrived at the same result in the case of the Brans-Dicke theory. 

O’Hanlon and Tupper (1972) have found that some of the solutions of the 
Brans-Dicke theory are not in accord with Mach’s principle (as usually interpreted 
(Brans and Dicke 1961)), because they lead to uniform space-times, whereas the 
corresponding values of 4 are not uniform being functions of both r and t .  

Here we find that the only possible solution (solution 2.1.1) of the Ross theory is in 
accord with Mach’s principle. The only solution (solution 2.2.1) obtained in case of 
the Sen-Dunn theory is also in accord with Mach’s principle. The two theories have 
obviously a limited scope of vacuum solution as against the Brans-Dicke theory. Both 
the theories, however, seem to be an improvement upon the Brans--Dicke theory with 
regard to Mach’s principle. 
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